Элементы квантовой механики
Автор: student | Категория: Естественные науки / Физика | Просмотров: 3194 | Комментирии: 0 | 29-12-2013 18:02
Элементы квантовой механики
7.1. Определить импульс и энергию: 1) рентгеновского фотона; 2) электро-на, если длина волны того и другого равна 10-10м. Ответ: 1) р=6,63.10-24 кг.м/с, E=12,4 кэВ; 2) р = 6,63•10-24 кг.м/с, Е = 151 эВ.
7.2. Определить длину волны де Бройля для электрона, находящегося в атоме водорода на третьей боровской орбите. Ответ: 1 нм.
7.3. Определить длину волны де Бройля для нейтрона, движущегося со средней квадратичной скоростью при Т = 290 К. Ответ: 148 пм.
7.4. Протон движется в однородном магнитном поле с индукцией B = 15 мТл по окружности радиусом R = 1,4 м. Определить длину волны де Бройля для протона. Ответ: 0,197 пм.
7.5. Определить, какую ускоряющую разность потенциалов должен пройти протон, чтобы длина волны де Бройля λ для него была равна 1 нм.
Ответ: 0,821 мВ.
7.6. Заряженная частица, ускоренная разностью потенциалов U = 500 В, имеет длину волны де Бройля λ = 1,282 нм. Принимая заряд этой частицы равным заряду электрона, определить ее массу. Ответ: 1.672.10-27 кг.
7.7. Кинетическая энергия электрона равна 1 кэВ. Определить длину волны де Бройля. Ответ: 38,8 пм.
7.8. Кинетическая энергия электрона равна 0,6 МэВ. Определить длину волны де Бройля. Ответ: 1,26 пм.
7.9. Определить, при каком числовом значении скорости длина волны де Бройля для электрона равна его комптоновской длине волны. Ответ: υ = 2,12•108 м/с.
7.10. Вывести связь между длиной круговой электронной орбиты и длиной волны де Бройля.
7.11. Определить, как изменится длина волны де Бройля электрона атома водорода при переходе его с четвертой боровской орбиты на вторую. Ответ: Уменьшится в 2 раза.
7.12. В опыте Дэвиссона и Джермера, обнаруживших дифракционную картину при отражении пучка электронов от естественной дифракционной решетки – монокристалла никеля, оказалось, что в направлении, составляющем угол α = 55° с направлением падающих электронов, наблюдается максимум отражения четвертого порядка при кинетической энергии электронов Т = 180 эВ. Определить расстояние между кристаллографическими плоскостями никеля.
Ответ: d = h.k / (2 cos(α/2)) = 0,206 нм, k – порядок максимума.
7.13. Моноэнергетический пучок нейтронов, получаемый в результате ядер-ной реакции, падает на кристалл с периодом d = 0,15 мм. Определить скорость нейтронов, если брэгговское отражение первого порядка на-блюдается, когда угол скольжения Θ = 30°. Ответ: 2,64 км/с.
7.14. Параллельный пучок моноэнергетических электронов направ¬лен нор-мально на узкую щель шириной а = 1 мкм. Определить скорость этих электронов, если на экране, отстоящем на расстоянии l = 20 см от щели, ширина центрального дифракционного максимума составляет Δx = 48 мкм. Ответ: υ = 2hl / (am.Δx) = 606 км/с.
7.15. Параллельный пучок электронов, ускоренный разностью потенциалов U = 50 В, направлен нормально на две параллельные, лежащие в одной плоскости, щели, расстояние d между которыми равно 10 мкм. Определить расстояние между центральным и первым максимумами дифракционной картины на экране, который расположен от щелей на расстоянии l = 0,6 м. Ответ: Δx = 2hl / (d ) = 10,4 мкм.
7.16. Объяснить, почему представление о боровских орбитах несовместимо с принципом неопределенности.
7.17. Ширина следа электрона (обладающего кинетической энергией Т = 1,5 кэВ) на фотопластинке, полученного с помощью камеры Вильсона, со-ставляет Δx = 1 мкм. Определить, можно ли по данному следу обнару-жить отклонение в движении электрона от законов классической меха-ники. Ответ: Δpx/px = 10-4, нет.
7.18. Электронный пучок ускоряется в электронно-лучевой трубке разностью потенциалов U = 1 кВ. Известно, что неопределенность скорости составляет 0,1 % от ее числового значения. Определить неопределенность координаты электрона. Являются ли электроны в данных условиях квантовыми или классическими частицами? Ответ: Δx = 38,8 нм.
7.19. Определить отношение неопределенностей скорости электрона, если его координата установлена с точностью до 10-5 м, и пылинки массой m = 10-12 кг, если ее координата установлена с такой же точностью.
Ответ: 1,1•1018.
7.20. Электронный пучок выходит из электронной пушки под дейст¬вием разности потенциалов U = 200 В. Определить, можно ли од-новременно измерить траекторию электрона с точностью до 100 нм (с точностью порядка диаметра атома) и его скорость с точностью до 10 %.
Ответ: m.Δυ.Δx < h; нет.
7.21. Электрон движется в атоме водорода по первой боровской орбите. Принимая, что допускаемая неопределенность скорости со¬ставляет 10 % от ее числового значения, определить неопределен¬ность координаты электрона. Применимо ли в данном случае для электрона понятие траектории? Ответ: Δx = 3,34 нм, нет.
7.22. Применяя соотношение неопределенностей, показать, что для движу-щейся частицы, неопределенность координаты которой равна длине волны де Бройля, неопределенность скорости равна по порядку величины самой скорости частицы.
7.23. Используя соотношение неопределенностей в форме Δpx.Δx ≥ ħ, оце-нить минимально возможную полную энергию электрона в атоме водорода. Принять неопределенность координаты равной радиусу атома. Сравнить полученный результат с теорией Бора.
Ответ: Emax = –me4 / (8h2.ε02) = -13,6 эВ.
7.24. Объяснить физический смысл соотношения неопределенности для энергии E и времени t: ΔE.Δt ≥ h.
7.25. Воспользовавшись соотношением неопределенностей, оценить размы-тость энергетического уровня в атоме водорода: 1) для основного со-стояния; 2) для возбужденного состояния (время его жизни равно 10-8с). Ответ: 1) 0; 2) 414 нэВ.
7.26. Длина волны λ излучаемого атомом фотона составляет 0,6 мкм. Принимая время жизни возбужденного состояния Δt = 10-8 c, определить отношение естественной ширины энергетического уровня, на который был возбужден электрон, к энергии, излученной атомом. Ответ: ΔЕ/Е = λ / (c.Δt) = 2.10-7.
7.27. Принимая, что электрон находится внутри атома диаметром 0,3 нм, определить (в электрон-вольтах) неопределенность энергии этого электрона. Ответ: ΔЕ = h2 / 2m. (Δx)2 = 16,7 эВ.
7.28. Объяснить, почему физический смысл имеет не сама ψ-функция, а квадрат ее модуля |ψ|2.
7.29. Объяснить, почему волновая функция должна быть конечной, однозначной и непрерывной.
7.30. Записать выражение для вероятности W обнаружения частицы в конечном объеме V, если известна координатная пси-функция частицы ψ(x,y,z).
7.31. Известно, что свободная квантовая частица описывается плоской монохроматической волной де Бройля. Плотность вероятности (вероятность, отнесенная к единице объема) обнаружения свободной частицы |ψ|2 = ψψ* = |А|2 = const. Объяснить, что означает постоянство этой величины.
7.32. Записать уравнение Шредингера для стационарных состояний для свободной частицы, движущейся вдоль оси х, а также определить посредством его решения собственные значения энергии. Что можно сказать об энергетическом спектре свободной частицы? Ответ: E = ħ2.k2 / (2m).
7.33. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в основном состоянии. Определить вероятность обнаружения частицы в левой трети «ямы».
Ответ: 0,195.
7.34. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в возбужденном состоянии (n = 2). Определить вероятность обнаружения частицы в области 3/8 l ≤ х ≤ 5/8 l . Ответ: 0,091.
7.35. Электрон находится в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками». Определить вероятность W обнаружения электрона в средней трети «ямы», если электрон находится в возбужденном состоянии (n = 3). Пояснить физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии. Ответ: 1/3.
7.36. Частица в одномерной прямоугольной «потенциальной яме» шириной l с бесконечно высокими «стенками» находится в возбужденном состоянии (n = 3). Определить, в каких точках «ямы» (0 ≤ х ≤ 1) плотность вероятности обнаружения частицы: 1) максимальна; 2) минимальна. Пояснить полученный результат графически. Ответ: 1) l/6, l/2, 5l/6; 2) l/3, 2l/3.
7.37. Определить, при какой ширине одномерной прямоугольной «потенци-альной ямы» с бесконечно высокими «стенками» дискретность энерге-тического спектра электрона сравнима с его средней кинетической энергией при температуре Т. Ответ: l = ħ.π / .
7.38. Доказать, что энергия свободных электронов в металле не квантуется. Принять, что ширина l прямоугольной «потенциальной ямы» с беско-нечно высокими «стенками» для электрона в металле составляет 10 см. Ответ: ΔE≈ 0,75n.10-16 эВ.
7.39. Частица находится в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Определить, во сколько раз изменяется отношение разности соседних энергетических уровней частицы: при переходе от n = 3 к n' = 8. Объяснить физическую сущность полученного результата. Ответ: Уменьшается в 3 раза.
7.40. Частица с энергией E движется в положительном направлении оси x и встречает на своем пути прямоугольный потенциальный барьер высотой U и конечной шириной l, причем E < U. Записать уравнение Шредингера для областей 1, 2 и 3.
7.41. Электрон с энергией Е = 4 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определить коэффициент D прозрачности потенциального барьера. Ответ: 0,1.
7.42. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Определить в электрон-вольтах разность энергий (U – E), при которой вероятность прохождения электрона сквозь барьер составит 0,5. Ответ: 0,454 эВ.
7.43. Протон с энергией Е = 5 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определить: 1) вероятность прохождения протоном этого барьера; 2) во сколько раз надо сузить барьер, чтобы вероятность прохождения его протоном была такой же, как для электрона при вышеприведенных условиях. Ответ: 1) 1,67.10-43; 2) в 42,9 раза.
7.44. Прямоугольный потенциальный барьер имеет ширину l = 0,1 нм. Раз-ность между высотой потенциального барьера и энергией движущегося в положительном направлении оси х электрона U – E = 5 эВ. Определить, во сколько раз изменится коэффициент D прозрачности потенциального барьера для электрона, если разность U – E возрастет в 4 раза. Ответ: Уменьшится в 10 раз.
7.45. Электрон с длиной волны де Бройля λ1 = 100 нм, двигаясь в положи-тельном направлении оси х, встречает на своем пути бесконечно широ-кий прямоугольный барьер высотой U = 100 эВ. Определить длину волны де Бройля после прохождения барьера. Ответ: λ2 = λ1 / = 172 пм.
7.46. Частица с энергией Е = 50 эВ, двигаясь в положительном направлении оси х, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 20 эВ. Определить вероятность отражения электрона от этого барьера. Ответ: W = 0,016.
7.47. Частица массой m = 10-19 кг, двигаясь в положительном направлении оси х со скоростью υ = 20 м/с, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 100 эВ. Определить коэффициент отражения R волн де Бройля на границе потенциального барьера. Ответ: R = 0,146.
7.48. Электрон с длиной волны λ де Бройля, равной 120 пм, движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 200 эВ. Определить коэффициент отражения R волн де Бройля на границе потенциального барьера. Ответ: R = l.
7.49. Объяснить физический смысл существования энергии нулевых колеба-ний для квантового гармонического осциллятора. Зависит ли наличие нулевых колебаний от формы «потенциальной ямы»?
7.50. Математический маятник можно рассматривать в качестве гармониче-ского осциллятора. Определить в электрон-вольтах энергию нулевых колебаний для маятника длиной l = 1 м, находящегося в поле тяготения Земли. Ответ: 1,03.10-15 эВ.
7.51. Рассматривая математический маятник массой m = 100 г и длиной l = 0,5м в виде гармонического осциллятора, определить классическую амплитуду А маятника, соответствующую энергии нулевых колебаний этого маятника. Ответ: А = = 1,54.10-17 м.